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Abstract

Current psychological models of word production (e.g. Dell,
1986; Levelt, Roelofs, & Meyer, 1999) only detail how we
plan the phonological content of words, and not how we artic-
ulate them. To understand how these models may be extended,
we must determine how information flows from phonological
encoding to articulation. For example, does activation cas-
cade from unselected phonological representations? So far, the
clearest support for cascading at this interface has come from
the finding that erroneously produced phonemes exhibit char-
acteristics of the intended phoneme (Goldrick & Blumstein,
2006). In this paper however, we use computational implemen-
tations to demonstrate that both cascading and non-cascading
models can account for this result. An extension of model be-
haviour analysis to other speech error phenomena additionally
shows that models based on the classic spreading activation ac-
count of word production (Dell, 1986) experience problems in
replicating some key aspects of human error patterns.
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Introduction

What links the plan to say a word to its articulation? Although
a number of models independently address planning (e.g.,
Dell, 1986; Levelt et al., 1999) or articulation (Browman &
Goldstein, 1989; Guenther, 2003), a fuller model would ex-
plain the process of word production from conceptualisation
through articulatory execution. As a preliminary move to-
wards such a model, the present paper investigates the flow
of information between phonological encoding and articula-
tion.

To produce a word, the appropriate conceptual, lexical and
phonological representations must be selected. Models such
as those of Dell (1986) and Levelt et al. (1999) assume that at
each level, similar representations may be partially activated.
For example, communicating the concept of a couch should
entail high activation and selection of the couch lexical entry,
but the lexical entry for sofa may also become activated. Re-
cently, studies such as that by Peterson and Savoy (1998) have
concluded that activation from such unselected lexical entries
cascades to phonological encoding. The question addressed
in this paper is whether a similar cascade of activation occurs
between the phonological level and articulation. We present
a detailed computational investigation of this interface which
shows that activation from unselected phonological represen-
tations need not necessarily cascade to the articulatory level
in order to account for existing evidence.

Evidence for cascading

Various studies have suggested that articulation can reflect ev-
idence of the activation of more than one phoneme at a time
(Boucher, 1994; Frisch & Wright, 2002; Goldstein, Pouplier,
Chen, Saltzman, & Byrd, 2007; Mowrey & MacKay, 1990).
This has lead some authors to claim that activation from
multiple phonemes passes through to articulation (Frisch &
Wright, 2002; Mowrey & MacKay, 1990). However, it is
possible that the evidence in these studies can be accounted
for through the introduction of noise at the articulatory level,
after phonological encoding is complete.

Goldrick and Blumstein (2006) addressed this issue by ask-
ing participants to produce tongue twisters such as keff geff
geff keff, where words in the tongue twister differed only by
the voicing of the onset. Their results demonstrated that when
participants attempted to produce /g/s which were identified
as sounding like /k/s, these /k/s were more voiced than in-
tended /k/ onsets identified as /k/s. In other words, there was
a trace of the intended voiced phoneme /g/ on an errorful pro-
duction of the voiceless phoneme /k/. Traces were also ob-
served for productions of voiced phonemes.

Goldrick and Blumstein argued that their findings could
not be accounted for by articulatory noise, as there would
be no reason for articulatory noise to systematically affect
only phonemes which were selected in error. Therefore, they
claimed, activation from the intended phoneme cascades to
articulation, even when noise in the model causes another
phoneme to be selected. When a /g/ in a tongue twister is
pronounced as /k/, the phonemic representation of /g/ is rel-
atively active (because it was the originally intended onset)
and this activation cascades, affecting the articulation of the
errorful /k/. If a /k/ is intended and selected, there will be
relatively little activation to cascade from the /g/. In a model
without cascading, the non-selected onset cannot affect artic-
ulation, and the resulting output for an errorful /k/ would not
differ from an intended /k/.

However, there are two possible ways in which a model
without cascading would be able to account for Goldrick and
Blumstein’s (2006) findings. First, the activation level of the
selected phoneme may be lower if it has been selected in er-
ror. Second, articulatory noise may still be able to account
for this evidence. We outline each of these arguments in more
detail below.



Activation levels
Our key account of non-cascading traces is based on the
fact that an intended phoneme will receive activation from
higher-level processes, and will therefore on average be more
activated when selected than a phoneme which is activated
through noise. An erroneously selected and therefore less ac-
tivated /k/ may activate its articulatory features less strongly
than a correctly selected and therefore more activated /k/,
such that an erroneously selected /k/ may result in a less
voiceless production. By definition, a less voiceless produc-
tion is more voiced, such that a trace of the intended /g/ would
be present in the final articulation without any activation hav-
ing been transmitted from the /g/ at the phonemic level.

Articulatory noise
An alternative account returns to articulatory noise. As ob-
served by Goldrick and Blumstein (2006), there is no rea-
son to believe that noise would affect incorrectly selected
phonemes more than correctly selected phonemes. However,
what is transcribed as an incorrectly selected phoneme may in
fact be a correctly selected phoneme which has been affected
by noise at the articulatory level. For example, a speaker may
intend to produce a /g/ and correctly select the /g/ phoneme.
Articulatory noise may then lead to the /g/ phoneme being
realised as a /k/. Because the articulation level would retain
activation from the /g/, the errorful /k/ would be more voiced
than a correctly produced /k/.

One piece of experimental evidence speaks against this
hypothesis. In a post-hoc analysis, Goldrick and Blum-
stein (2006) failed to find a significant difference in vari-
ability of voicing for tokens identified as correct between a
tongue-twister and a control task. In this study we examine
whether computational modelling can add to the evidence for
or against articulatory noise as a source of traces.

To investigate these accounts, we implemented a model
with optional cascading from phonological encoding to ar-
ticulation, and evaluated its performance in producing word
onsets. In Experiment 1 we aim to simulate evidence from
Goldrick and Blumstein (2006). Experiment 2 investigates
whether successful models generalise to other patterns of
human speech errors from the literature. Below, we detail
the model implementation before presenting our experimen-
tal findings.

Model Implementation
Model architecture
Our model was based on Dell’s (1986) model of word produc-
tion, and had word, phoneme, and articulatory feature levels.
Figure 1 shows the portion of the model required for produc-
ing the words “gap” and “cap”. The model had a further 48
CVC words in its vocabulary, together with the phonemes and
features required to produce those words. We added these ex-
tra words as we wished to investigate contextual errors, and in
a two word network, non-contextual errors would always look
like contextual errors. The 48 words were chosen randomly,

Figure 1: Architecture of the model

with the single constraint that at least one word beginning
with /g/ and one word beginning with /k/ was found. This en-
sured that there was a possible influence of lexical onsets on
the errors produced. The full list of words used is provided in
the appendix.

Processing
Word production in the model occurs in two stages. First, the
node corresponding to the word the model should produce
is selected and its activation boosted. Any immediately up-
coming words are primed with a smaller amount of activation
to approximate processing at higher levels (cf. Dell, 1986).
Activation then passes through the network, and the most ac-
tivated phonemes are selected and their activation boosted. In
the second stage, activation continues to pass through the net-
work, after which the most activated features are selected for
each feature dimension. For example, for the onset phoneme,
the most activated features are selected for each of place,
manner and voicing. Following production of the word, the
activation levels of all previously selected nodes are set to 0.
Production of any remaining words then ensues in the same
manner.

The manner in which activation spreads through the net-
work depends on the connectivity settings selected. The
model could be configured to permit activation from unse-
lected nodes in one layer to cascade to the layer directly be-
low; e.g., from the word layer to the phoneme layer, or, as
was of particular interest to us, from the phoneme layer to
the feature layer. Additionally, activation from a lower layer
could optionally feed back to connected nodes on a higher
layer, i.e., from the phoneme layer to the word layer, or from
the feature layer to the phoneme layer. In our model, we do
not implement feedback without cascading.

Activation of nodes in the network was calculated in the
same manner as Dell, Schwartz, Martin, Saffran, and Gagnon
(1997). Following Hartsuiker (2002), we added an additional
parameter such that downward and upward spreading rates
could differ.

For a node in a layer where feedback of activation from the
layer below was not enabled, upward spreading rate would
be 0. A node in a layer where there was no cascading of
activation from the layer above would only receive activation
from connected selected nodes in the layer above, rather than
all connected nodes in the layer above. If selection had not
yet taken place in the layer above, that node would receive no
activation.



Table 1: Activation parameter values used in simulations

Name Values
Downwards spreading rate 0.05, 0.2, 0.35
Upwards spreading rate 0.05, 0.2, 0.35
Decay 0.4, 0.5, 0.6
Activation noise factor 0.05, 0.15, 0.25
Intrinsic noise standard deviation 0.005, 0.01, 0.05
Jolt 50, 100, 150, 200
Prime 10, 50, 100
Number of steps per stage 2, 5, 8

Parameters
In order to carry out the simulations, a number of parameter
values must be determined. Firstly, parameters affecting the
spreading of activation must be set. The empirical ground-
ing of these parameters is not obvious. We therefore tested
model behaviour across a number of parameter setting combi-
nations, to help reveal the true effect of changing the phono-
logical encoding to articulation connectivity. The parame-
ter values we used, shown in Table 1, were based on values
used in the previous literature (Dell, 1986; Dell et al., 1997;
Goldrick, 2006; Hartsuiker, 2002; Rapp & Goldrick, 2000).
This facilitates a linking of our results to those of previous
word production modelling studies.

All possible combinations of activation parameter values
were tested over all connectivity options, subject to two con-
straints, such that the prime always had to be less than the
jolt, and the feedback connection strength was never greater
than the forward connection strength.

As well as the activation spreading parameters, the con-
nectivity settings must be decided. Following Peterson and
Savoy (1998) we elected to enable word to phoneme cascad-
ing. However, we tested all our models both with and without
phoneme to word feedback.

We configured our model to simulate three categories of
connectivity between phonological encoding and articulation:
non-cascading, cascading, and cascading with feedback. The
latter variant was included to enable comparison with Dell’s
(1986) model. We tested each of these categories of model
across all the parameter value combinations detailed above.
This resulted in a total of 21,870 simulations: 6,561 non-
cascading and 6,561 cascading simulations, and 8,748 cas-
cading with feedback simulations (the feedback connection
strength parameter could not be varied for models in which
no feedback occurred between any levels).

Model output
Preliminary analyses focus on the onset of each word pro-
duced. The production of each onset was classified in two
ways. The first approach involved resolving the selected fea-
tures into a phoneme. For example, if the selected onset fea-
tures were velar, stop, and voiced, the onset was classified
as a /g/. This corresponds to classifying each production by
resulting articulation, and is intended to reflect the way in

which we normally determine what someone has said. The
second approach followed previous work such as that of Dell
(1986), classifying responses by selected phoneme. This was
achieved by recording the phonemes selected at the phono-
logical level. Note that the choice of classification method is
critical when determining how any traces in errorful speech
are generated. If the main cause of traces is articulatory
noise, classification by resulting articulation will result in
traces being identified (an intended /g/ is correctly selected
at the phoneme level, but noise on the voicing nodes leads to
it being identified as a /k/ with strong /g/ characteristics) but
classification by the selected phoneme will not (a correctly
selected /g/ phoneme should be articulated the same way as
an incorrectly selected /g/ phoneme).

The simulations were implemented in Java 1.5. Simula-
tions were carried out using the Edinburgh Compute and Data
Facility (www.ecdf.ed.ac.uk).

Experiment 1
Experiment 1 was designed to test whether models in the
three connectivity categories displayed traces of intended
phonemes on erroneous productions.

Method
Each variant of the model produced the phrases “gap cap”
and “cap gap” 5,000 times each, resulting in a total of 10,000
phrase productions per variant. Each onset production was
classified as correct, a contextual error, or a non-contextual
error (once using classification by resulting articulation and
once using selected phoneme). For each production resulting
in a /k/ or a /g/, voicing of the onset phoneme was calculated
as the activation of the voiceless feature minus that of the
voiced feature. This measure varies in a similar way to voice
onset time, such that very voiceless productions result in a
high value, and voiced productions result in a low value.

Voicing values were compared for correct and erroneous
productions, assuming that at least two /k/→ /g/ and two /g/
→ /k/ errors had been observed. If the values differed signifi-
cantly in the right direction for correct compared to erroneous
productions, we assumed that traces of the intended phoneme
were observed when errors were produced. For the purposes
of the present paper, only simulations which produced traces
in both /k/→ /g/ and /g/→ /k/ errors were considered.

Results
Figure 2 shows the results of Experiment 1. The results are
displayed as percentages of simulations to facilitate compari-
son between sets of simulations. 52.2% of simulations did not
produce enough errors for trace analysis. When classifying
productions by resulting articulation, we found 565 parameter
setting combinations for the non-cascading model which dis-
played traces, out of 3,024 simulations where enough errors
occurred to permit trace analysis. For the cascading model,
we found 1,503 simulations which displayed traces out of
3,008 analysable simulations. 2,619 out of 4,414 analysable
cascading with feedback simulations displayed traces.



Figure 2: Results of Experiment 1. Portions of bars coloured
in black denote simulations that showed traces when produc-
tions were classified by both resulting articulation and se-
lected phoneme. Dark grey denotes simulations that showed
traces only when productions were classified by resulting ar-
ticulation. Light grey denotes simulations where enough er-
rors were produced to carry out the trace analysis, but no trace
was found. White denotes simulations where not enough er-
rors were produced to carry out the trace analysis.

We analysed further the simulations which showed traces
when productions were classified by resulting articulation to
determine whether they also showed traces when productions
were classified by selected phoneme. We found 331 non-
cascading model simulations, 716 cascading model simula-
tions, and 1,461 cascading with feedback model simulations
which showed traces whichever way the productions were
classified.

Discussion
Although the proportions of simulations which show traces
are higher when models include cascading, our results show
that there are parameter setting combinations for the non-
cascading model which result in traces of the intended
phoneme being observable on erroneous productions.

So how do models produce traces? A number of simula-
tions in all connectivity categories only showed traces when
productions were classified by resulting articulation, and not
by selected phoneme. This would imply that articulatory
noise is largely the cause of traces in these simulations. This
helps confirm that non-cascading models can indeed generate
traces through articulatory noise. However, such performance
is not in line with Goldrick and Blumstein’s (2006) post-hoc
analysis.

Traces that are observed when productions are classified
by selected phoneme cannot, on the other hand, simply be at-
tributed to articulatory noise. Analysis showed that correctly
selected phonemes were significantly more activated than er-

roneously selected phonemes in 98.8% of analysable non-
cascading simulations, supporting the activation levels hy-
pothesis. However, only 13.0% of analysable non-cascading
simulations produce traces when productions are classified by
selected phoneme. Further analysis is required to determine
which parameter settings permit activation level differences
in phonological encoding to pass down to articulation.

Experiment 2
Experiment 2 was designed to investigate whether the mod-
els tested generalised to other types of speech error. When
exploring such a large parameter space, we were keen to ver-
ify that the parameter settings of simulations which produced
traces did not cause the models to exhibit other non-human
like behaviour. In Experiment 2 we used evidence from cor-
pora to determine reasonable bounds on human behaviour
for a number of types of speech error, and compared the be-
haviour of the previously tested models to our bounds using a
random two word production task. We then re-evaluated the
results of Experiment 1 in the light of the new findings.

Method
Determining constraints Several corpora of speech error
data were examined to determine bounds on the observable
rates of anticipations, perseverations, exchanges and non-
contextual errors in everyday human speech (del Viso, Igoa,
& Garcia-Albea, 1991; Garnham, Shillcock, Brown, Mill,
& Cutler, 1981; Nooteboom, 1969, 2005; Pérez, Santiago,
Palma, & O’Seaghdha, 2007; Stemberger, 1989). Where
counts for incomplete anticipations (such as barn door →
darn. . . ) were listed separately, these errors were split be-
tween the anticipation and exchange categories in the same
proportion as completed anticipations and exchanges, as sug-
gested by Stemberger (1989).

For each statistic, we calculated the mean value across cor-
pora, and the standard deviation of the mean. We created a
set of inner bounds, one standard deviation below and above
the mean, and a set of outer bounds, two standard deviations
below and above the mean. Since not all literature includes
details of numbers of correct productions, the inner bounds
for these were based on the highest and lowest percentages
of correct productions seen across all participants in Goldrick
and Blumstein (2006). This range was doubled to create the
outer bounds. Where bounds exceeded 100% or fell below
0%, they were replaced with these cutoff values. All bounds
are given in Table 2.

Procedure 10,000 random two word phrases from the net-
work’s vocabulary were chosen, subject to the constraint that
the words had different onsets. The same set of 10,000
phrases was used for each simulation.

Results
For brevity, all results reported use classification by resulting
articulation. Results using classification by selected phoneme
do not differ from the reported results in any significant re-
spect.



Figure 3: Results of Experiment 2. Constraints passed by all simulations which produced enough errors for trace analysis in
Experiment 1. Note: 33 simulations did not produce any contextual errors for anticipation, perseveration or exchange analysis,
and 5 simulations did not produce any errors for non-contextual error analysis.

Table 2: Percentage bounds on speech error production.
The anticipation, perseveration and exchange constraints are
given as percentages of all contextual errors. The non-
contextual constraints are given as percentages of all errors.
The correct production constraints are given as percentages
of all productions.

Outer
lower
bound

Inner
lower
bound

Inner
upper
bound

Outer
upper
bound

Anticipation 0.54% 23.96% 70.79% 94.20%
Perseveration 1.85% 13.22% 35.97% 47.34%
Exchange 0% 8.13% 47.93% 67.83%

Non-contextual 0% 5.22% 40.66% 58.38%

Correct productions 94.25% 96.0% 99.5% 100%

No simulations met the inner constraints. As is clear from
Figure 3, a notable problem was exchanges. Only 247 simula-
tions of the 10,446 model and parameter combinations which
produced enough errors for trace analysis in Experiment 1
produced enough exchanges to fall within the inner bounds
for exchanges, and 28 further simulations produced too many.
The remaining 97% of the simulations produced too few ex-
changes.

373 simulations did however meet the outer constraints.
155 of these were non-cascading model simulations, while
114 were cascading model simulations, and 104 were feed-
back model simulations. Figure 4 shows the proportions
of these simulations which displayed traces of the intended
phoneme on erroneous productions in Experiment 1. When
productions from Experiment 1 were categorised by resulting
articulation, 44 non-cascading model simulations displayed
traces, as well as 60 cascading simulations and 57 cascad-
ing with feedback simulations. When productions were cate-
gorised by selected phoneme, 43 non-cascading model simu-
lations displayed traces, as well as 54 cascading simulations
and 55 cascading with feedback simulations.

Discussion
Our results surprisingly showed that no parameter settings of
the classical word production model (Dell, 1986) resulted in
behaviour which met the inner constraints. It appears that low
exchange error rates are a particular issue for this architecture.
Closer examination of previous models shows that only 1 out
of the 5 comparable simulations detailed in Dell (1986) and
Hartsuiker (2002) produced sufficient exchanges (9% in the
Dell, 1986 model replication; Hartsuiker, 2002). Part of the
reason that this problem has previously gone unnoticed lies
with researchers having frequently underestimated the pro-
portions of exchanges in natural speech (see e.g. Nooteboom,
2005, for further details).

Of those simulations which pass the outer constraints, there
are still non-cascading models which generate traces as in Ex-
periment 1. This suggests that non-cascading models which
produce traces need not exhibit behaviour which is less plau-
sibly human than that of other architectures.

Across connectivity conditions however, there are now
very few simulations which show traces when utterances are
categorised by resulting articulation but not when utterances
are categorised by selected phoneme. Closer examination
of the data shows that 85.6% of the simulations previously
thought to generate traces through articulatory noise produce
too few correct utterances to fall within the outer bounds,
and that 86.3% of these simulations produce too many non-
contextual errors. This result supports Goldrick and Blum-
stein’s (2006) conclusion that articulatory noise is not an ad-
equate explanation for their data.

Conclusions
This paper has demonstrated that cascading from unselected
phonemes to articulation is not necessary to explain voicing
traces of intended phonemes on erroneous productions. This
result underlines the importance of modelling to better un-
derstand the constraints placed on theories by empirical re-
sults. Investigation of model performance past this single
phenomenon and across parameter settings has also shown
that models based on the classic spreading activation account



Figure 4: Results of Experiment 2. Simulations which met
the outer constraints, as a proportion of all simulations run
in each connectivity category. Portions of bars coloured in
black denote simulations that passed the outer constraints and
showed traces both when productions were classified by re-
sulting articulation and by selected phoneme. Dark grey de-
notes simulations that passed the outer constraints but showed
traces only when productions were classified by resulting ar-
ticulation. Light grey denotes simulations which passed the
outer constraints but which did not show traces.

of word production (Dell, 1986) may require modification in
order for them to be able to accurately capture key human
speech error patterns.
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Appendix: Words in the model’s vocabulary
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